

Catalysis Today 28 (1996) 91-97

Kinetic mechanism of reactions of carbon tetrachloride with TT-niobium oxide and niobium phosphate

Akira Morikawa *, Kohki Ebitani, Yoshiaki Hirano

Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152, Japan

Abstract

The rate of reaction of CCl₄ with lattice oxygen atoms of the TT-phase niobium oxide (TT-Nb₂O₅) at 453 K was limited by the diffusion of CCl₄ through the layer of a solid reaction product, NbOCl₃, formed around the outer surface of niobium oxide. This contrasts to the reaction occurring on the amorphous niobium phosphate in which an inner niobium phosphate participates in the reaction leading to the complete oxidation of CCl₄ to CO₂. For the reaction of CCl₄ on TT-Nb₂O₅ at temperatures above 573 K, the chemical reaction occurring on the surface of the niobium oxide controls the decomposition rate due to the disappearance of the layer of NbOCl₃ by its sublimation.

Keywords: Carbon tetrachloride; Niobium oxide

1. Introduction

The process of the decomposition of chrolofluorocarbons (CFCs) into harmless compounds should be developed to reduce the global environmental pollution. Many investigations concerning CFC decomposition in the presence of water and/or molecular oxygen [1-5] as well as the reductive dechlorination of CFC with molecular hydrogen [6-8] have been reported. Although it has been proposed that the cleavage of the C-Cl bond is an important step in the whole CFC decomposition [1,4], little information for the requirements of the surface properties of solids or catalysts for C-Cl bond cleavage has been presented. In our previous paper [9], niobium oxide of TT-phase (TT-Nb₂O₅) oxidized CCl₄ into CO₂ very selec-

tively (without formation of phosgene, COCl₂) among metal oxides tested, such as TiO₂, Al_2O_3 , ZrO_2 , $SiO_2-Al_2O_3$ and amorphous Nb₂O₅, in the absence of water and oxygen. Since oxygen was excluded from the reaction system, the decomposition of CCl₄ on TT-Nb₂O₅ can be regarded as the oxidation of CCl₄ by lattice oxygen atoms of the TT-Nb₂O₅ occurring at the gas-solid interface, similar to the reduction process of metal oxide into metal by hydrogen molecule [10]. In the reduction process of metal oxide by H2, two kinetic mechanism, diffusion-controlled and chemical reaction-controlled, are well demonstrated [10]. In our previous paper [11], it was suggested that the reaction of TT-Nb₂O₅ was controlled by the diffusion of CCl₄ through the layer of the solid reaction product formed around the outer surface of the oxide. However, further studies are necessary to verify the suggestion.

Corresponding author.

In this paper, the kinetic mechanism of the reaction between TT-Nb₂O₅ and CCl₄ is briefly reviewed and compared to that of niobium phosphate, from the point of view of the reduction of the metal oxide by CCl₄.

2. Experimental

The TT-Nb₂O₅ was prepared by calcination of niobic acid (Nb₂O₅ · nH₂O, No. AD-350 supplied by Companhia Brasileira de Metalurgia e Mineralo (CBMM)) at 1023 K. The TT-Nb₂O₅ was evidenced by its X-ray diffraction pattern. The niobium phosphate (Nb:P = 2.2:1 atomic ratio, P₂O₅ = 15.9 wt.-%) was also supplied by CBMM. The phase of the niobium phosphate calcined at 873 K was found to be amorphous.

The reaction of metal oxide (0.2 g) with CCl₄ was carried out under the atmospheric pressure in a tubular flow reactor made of quartz with an inner diameter of 12.5 mm. The following typical condition was applied to the reaction: CCl₄ 4.5 kPa, He 96.8 kPa, total flow rate 2.4 1/h, W/F = 0.083 g h l⁻¹. Usually, the metal oxide powder of 10-20 mesh was used after crushing the powder disk formed under 200 kg/cm² pressure. The CCl₄ was supplied to the reaction by passing a helium carrier through CCl₄ saturators and a column of MgSO₄ powder to dry the gas mixture. The outlet gas mixture of CCl₄, CO2 and COCl2 from the reactor was analyzed by on-line gas chromatography in a Gasukuropack-54 column. The outlet gas was passed through a K₂CO₃ aqueous solution (0.5 M), and trapped chlorides were quantified by AgNO₃ and Na₂S₂O₃ titration. In the absence of metal oxide in the quartz reactor, CCl₄ decomposition did not occur under the present experimental conditions.

The degree of the reduction of the metal oxide, α , was defined as the ratio of the number of O atoms in the reaction products to that in the metal oxide at the initial stage. The selectivity to CO_2 and conversion of CCl_4 were calculated by the equations described earlier [4].

The BET specific surface area of the metal oxide was determined by nitrogen adsorption at 77 K.

In order to evaluate the distribution of the chlorine along the depth from the surface in the metal oxide after the reaction with CCl₄, the energy dispersed X-ray spectroscopic (EDS) measurements were conducted on the EDAX PV9900I (Philips Co., Ltd.).

3. Results and Discussion

The reaction products in vapor phase were CO_2 and $COCl_2$. No CO was detected during the reaction at any reaction temperature and at any process time. Typical results of the change with increasing process time in the CCl_4 conversion (left axis) and the CO_2 selectivity (right axis) on TT-Nb₂O₅ at 453 K and 673 K are shown in Fig. 1. At any reaction temperature,

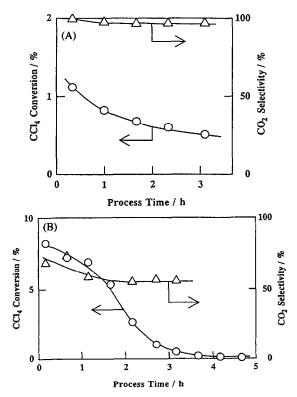


Fig. 1. The time course of CCl $_4$ conversion (left axis) and CO $_2$ selectivity (right axis) on TT-Nb $_2$ O $_5$ at (A) 453 K and (B) 673 K.

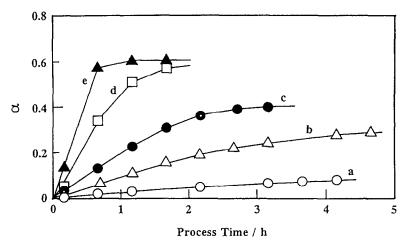


Fig. 2. The changes in α (degree of reduction of TT-Nb₂O₅) as a function of time at (a) 573, (b) 623, (c) 673, (d) 723 and (e) 773 K.

the CCl₄ conversion gradually decreased as the process time increased. As reported previously [9], TT-Nb₂O₅ exhibited a higher activity than any other metal oxide tested: Al₂O₃, SiO₂-Al₂O₃, TiO₂ and V₂O₅. The selectivity to CO₂ on TT-Nb₂O₅ was higher than that obtained on amorphous Nb₂O₅. The specific activity (per surface area) for CO₂ formation of TT-Nb₂O₅ (BET specific surface area, 50 m² g⁻¹) is four times greater than that of the amorphous Nb₂O₅ (120 m² g⁻¹). The carbon balance on the TT-Nb₂O₅ at the process time of 3 h at 453 K was ca. 95%, indicating that carbon compounds did not remain on the surface during the reaction.

At reaction temperatures higher than 673 K, the CCl₄ conversion decreased to almost zero and the reactant TT-Nb₂O₅ disappeared after several h, indicating a complete reaction of TT-Nb₂O₅ with CCl₄. Since O₂ was not supplied as a reactant, the CCl₄ was oxidized into CO₂ or COCl₂ only by lattice oxygen atoms of the TT-Nb₂O₅. Thus, the reaction between TT-Nb₂O₅ and CCl₄ can be regarded as the oxidation of CCl₄ by TT-Nb₂O₅.

Fig. 2 shows the change in α (degree of reduction of TT-Nb₂O₅) as a function of the process time at various reaction temperatures (573-773 K). At higher reaction temperatures (723 and 773 K), the value of α becomes a constant value of 0.6 for longer process time. The α value of 0.6 means that 60% of the

oxygen atoms of the TT-Nb₂O₅ was removed by the reaction with CCl₄. After the reaction at 723 K and 773 K, the TT-Nb₂O₅ did not remain on the reactor bed; a white powder product with a yellowish cast was deposited at the outlet of the reactor. The powder was dissolved in deionized water without exposure to air and the amount of Cl^- ion in the solution (pH < 7) was determined by titration using Mohr's method. The ratio of the amount of Cl⁻ in the solution to the amount of niobium in the powders obtained from the reaction with CCl₄ at 723 K were 2.98. This ratio corresponds to the Cl/Nb ratio of the compound, NbOCl₃, whose color was white. The yellowish cast in the product powder may be due to the presence of a small amount of NbCl₅, whose color is yellow.

The following two reactions can explain the experimental results:

$$Nb_2O_5 + 2CCl_4 \rightarrow 2NbOCl_3 + CO_2 + COCl_2$$
(1)

$$2Nb_2O_5 + 3CCl_4 \rightarrow 4NbOCl_3 + 3CO_2 \qquad (2)$$

Eq. 2 is obtained by taking into account the further reaction of COCl₂ with Nb₂O₅. When both of the reactions occur in the present reaction system, the value of oxygen fraction at the completion of the reactions is 0.6, well corresponding to the experimental results shown in Fig. 2.

In order to estimate a precise reaction rate, the CCl₄ conversion and CO₂ selectivity were compared at the same α value. Fig. 3 shows the changes in the reaction rate and CO₂ selectivity as a function of the reaction temperature at constant α of 0.2. The total reaction rate, or the sum of the formation rates of CO₂ and COCl₂, increased as the reaction temperature increased. The increase in the COCl₂ formation rate is not remarkable, while that in the CO₂ formation rate is remarkable. A plot of the logarithm of the (total) reaction rate to a reciprocal of the reaction temperature at a constant α of 0.2 reveals that the apparent activation energies for CO₂ and COCl₂ formations were 96.6 kJ mol⁻¹ and 54.2 kJ mol⁻¹, respectively. These values were almost unchanged at various values of α :

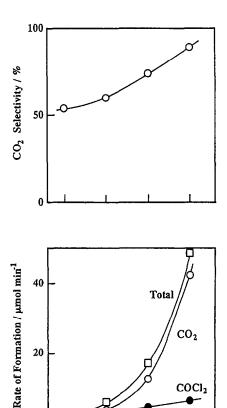


Fig. 3. The changes in the reaction rate and CO_2 selectivity for the reaction of CCl_4 and $TT-Nb_2O_5$ as a function of the reaction temperature at a constant α of 0.2.

673

723

Temperature / K

773

623

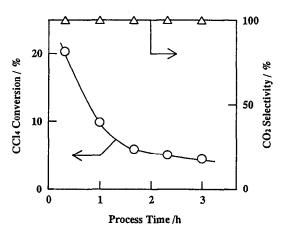


Fig. 4. The time course of CCl₄ conversion (left axis) and CO₂ selectivity (right axis) on niobium phosphate at 673 K.

0.1 or 0.3. A low activation energy for the rate of COCl₂ formation may be due to the fact that COCl₂ is an intermediate in the reaction to give a complete oxidation product, CO₂.

The decomposition of CCl₄ is found to occur on the niobium phosphate (BET specific surface area, 130 m² g⁻¹). Fig. 4 shows a typical reaction result of the change with increasing process time in the CCl₄ conversion and CO₂ selectivity on the niobium phosphate at 673 K. As observed on TT-Nb₂O₅, the CCl₄ conversion decreased as the process time increased. However, the CO₂ selectivity on the niobium phosphate was very high (100%) in contrast to the reaction on TT-Nb₂O₅ at 673 K (Fig. 1B). The change in α as a function of the process time at various reaction temperatures is shown in Fig. 5. At a constant α of 0.10, the dependencies of CCl₄ conversion and CO₂ selectivity on the reaction temperature (Fig. 6) are different from those obtained for TT-Nb₂O₅, especially for the CO₂ selectivity.

Generally, the reduction of metal oxide, assuming a contacting sphere model, is expressed as

$$\frac{k_{p}}{r_{0}d_{0}}(C_{0} - C_{eq})t$$

$$= \left[1 - (1 - \alpha)^{1/3}\right] + \frac{r_{0}k_{p}}{k_{1}}$$

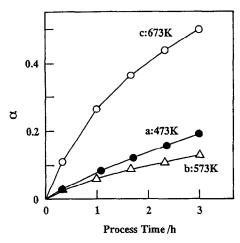
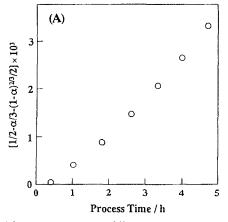



Fig. 5. The changes in α (degree of reduction of niobium phosphate) as a function of time at (a) 473, (b) 573 and (c) 673 K.

$$\times \left[\frac{1}{2} - \frac{\alpha}{3} - \left(1 - \alpha \right)^{2/3} \right] \tag{3}$$

where α is the degree of reduction, r_0 is the radius of metal oxide at the initiation, C_0 is the concentration of reducing reagent at r_0 , $C_{\rm eq}$ is the equilibrium concentration of reducing reagent, d_0 is the density at r_0 , $k_{\rm p}$ is the rate constant of the reaction and $k_{\rm d}$ is the diffusion coefficient of reducing reagent [10]. This is the integrated rate equation giving the degree of reduction, α , as a function of time t.

If
$$k_{\rm p} \ll k_{\rm d}$$
 or $k_{\rm p}/k_{\rm d} = 0$, then
$$\frac{k_{\rm p}}{r_0 d_0} (C_0 - C_{\rm eq}) t = \left[1 - (1 - \alpha)^{1/3}\right] \tag{4}$$

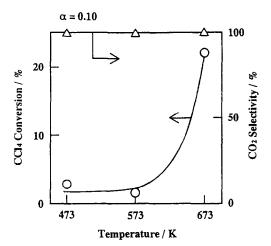
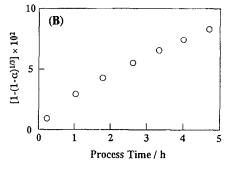


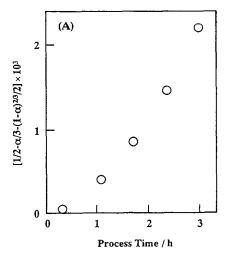
Fig. 6. The changes in the reaction rate and CO_2 selectivity for the reaction of CCl_4 and niobium phosphate as a function of the reaction temperature at a constant α of 0.1.

If
$$k_{\rm p} \gg k_{\rm d}$$
 or $k_{\rm d}/k_{\rm p} = 0$, then
$$\frac{k_{\rm p}}{r_0 d_0} (C_0 - C_{\rm eq}) t$$

$$= \frac{r_0 k_{\rm p}}{k_{\rm d}} \left[\frac{1}{2} - \frac{\alpha}{3} - (1 - \alpha)^{2/3} \right]$$
(5)

A linear correlation holds between $[1-(1-\alpha)^{1/3}]$ and t for the chemical reaction control at the metal oxide/reduced phase interface. If the overall reaction rate is limited by the diffusion of reducing reagent (CCl₄, in this case) through the reaction product layer, a plot of $[1/2-\alpha/3]$




Fig. 7. Plot of (A) $[1/2 - \alpha/3 - (1-\alpha)^{2/3}/2]$ and (B) $[1-(1-\alpha)^{1/3}]$ versus time for the reaction of TT-Nb₂O₅ with CCl₄ at 453 K.

 $-(1-\alpha)^{2/3}/2$] against t may become a straight line.

Fig. 7A shows a plot of $[1/2 - \alpha/3 - (1 - \alpha)^{2/3}/2]$ against the process time, t, for the reaction at 453 K on TT-Nb₂O₅. A plot of $[1 - (1 - \alpha)^{1/3}]$ against t for the same reaction is shown in Fig. 7B. As can be seen, the plot in Fig. 7A fits a straight line rather than that in Fig. 7B, suggesting that the diffusion control mechanism is dominant for the reaction at 453 K on TT-Nb₂O₅. Fig. 8 shows both plots for the reaction at 473 K on niobium phosphate. The plot in Fig. 8B. This suggests that the whole reaction occurring on niobium phosphate at 473 K is controlled by the chemical reaction between CCl₄ and niobium phosphate.

To ensure these suggestions, the following experiment was performed. The CCl₄ reaction was carried out on the pelletized TT-Nb₂O₅ and niobium phosphate with various amount. If the inner metal oxide in the pellet of the metal oxide participates in the reaction with CCl₄, the reaction rate per g is independent on the amount or the size of the pellet. Fig. 9 shows the relationship between the rate of CO₂ formation per g or per apparent outer area and the amount

of pelletized TT-Nb₂O₅, and of niobium phosphate at 453 K after the process time of 1 h. As clearly shown, the rate per apparent outer area of the pellet of TT-Nb₂O₅ was constant for different sizes of pellets, whereas the rate per g of the pellet was not. This indicates that the inner niobium oxide in the pellet of TT-Nb₂O₅ did not equally participate in the reaction with CCl₄ and the oxide at the surface of the pellet mostly reacts with CCl₄. It is stressed that the reaction of the TT-Nb₂O₅ with CCl₄ at 453 K was controlled by the diffusion of the CCl₄ through the outer layer of the oxide pellet and the inner niobium oxide did not encounter the reactant CCl₄. The EDS profile of the pellet after the reaction with CCl₄ at 453 K ($\alpha = 0.012$ at 5 h) revealed that the Cl element was detected only near the outer surface of the oxide pellet. On the other hand, for niobium phosphate, the rate per g of pellet is independent on the amount of the pellet. This result suggests that the inner niobium phosphate equally participates in the reaction with CCl₄. The EDS showed that the distribution of the Cl element is flat and not dependent on the distance from the surface of the pellet of niobium phosphate. The reaction may occur on the surface of the pri-

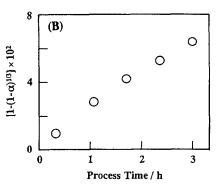
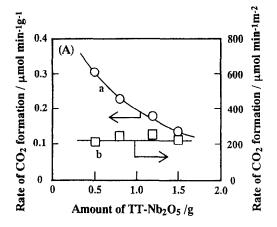



Fig. 8. Plots of (A) $[1/2 - \alpha/3 - (1-\alpha)^{2/3}/2]$ and (B) $[1-(1-\alpha)^{1/3}]$ versus time for the reaction of niobium phosphate with CCl₄ at 473 K.

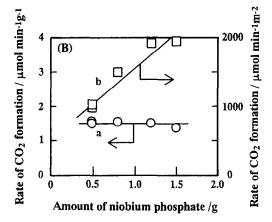


Fig. 9. Relationship between the rate of CO_2 formation (a, per g and b, per apparent area) and the amount of pelletized (A) TT-Nb₂O₅ and (B) niobium phosphate at 453 K.

mary particles constructing the pellet, and, therefore, the Cl distribution is apparently uniform throughout the pellet.

4. Conclusions

The reaction of TT-Nb₂O₅ with CCl₄ at 453 K was controlled by the diffusion of CCl₄ through the layer of a reaction product, NbOCl₃, formed around the outer surface of the Nb₂O₅. For the reaction at temperatures above 573 K,

the chemical reaction occurring on the surface of the Nb₂O₅ controls the total reaction rate, due to the disappearance of the layer of NbOCl₃ by its sublimation. For niobium phosphate, the inner niobium phosphate participates in the reaction with CCl₄. Therefore, the reaction was controlled by the chemical reaction between niobium phosphate and CCl₄, leading the complete oxidation of CCl₄ into CO₂. At the present time, the reason for the participation of the inner niobium phosphate in the reaction is not well understood. Further investigation of the role of phosphate and chloride ions in the reaction of the niobium phosphate is necessary.

Acknowledgements

The authors thank Dr. Rokuro Ohki, Research Cooperation Division, Tokyo Institute of Technology, for his technical advice regarding the EDS measurement.

References

- [1] S. Okazaki and A. Kurosaki, Chem. Lett., (1989) 1901.
- [2] S. Imamura, H. Tarumoto and S. Ishida, Ind. Eng. Chem. Res., 1449 (1989) 28.
- [3] T. Aida, R. Higuchi and H. Niiyama, Chem. Lett., (1990) 2247.
- [4] K. Mizuno, Proc. Int. Forum on Environ. Catal.-'93, (1993) 29.
- [5] S. Karmakar and H.L. Greene, J. Catal., 364 (1992) 138.
- [6] W. Ueda, S. Tomioka, Y. Morikawa, M. Sudo and T. Ikawa, Chem. Lett., (1990) 879.
- [7] Y. Takita, H. Yamada, M. Hashida and T. Ishihara, Chem. Lett., (1990) 715.
- [8] R. Ohnishi, I. Suzuki and M. Ichikawa, Chem. Lett., (1991) 841.
- [9] K. Ebitani, Y. Hirano, J.-H. Kim and A. Morikawa, React. Kinet. Catal. Lett., 351 (1993) 51.
- [10] N.W. Hurst, S.J. Gentry, A. Jones and B.D. McNicol, Catal. Rev. Sci. Eng., 233 (1982) 24.
- [11] K. Ebitani, Y. Hirano and A. Morikawa, J. Solid State Chem., 379 (1995) 117.